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Autonomous decision-making systems frequently confront a choice between
two or more alternatives. The criteria for comparing the alternatives are often
unclear or unethical. In this report, we discuss two such problems !. The first
is the Kidney Exchange Problem, where a central market maker allocates living
kidney donors to patients in need of an organ. The allotment chosen from the
numerous may determine a person’s fate. The second is the Trolley Problem in
Autonomous Vehicles. A brake failure may encompass deciding whom to kill
and whom to save. This report describes a general principle for ethical decision
making in autonomous systems using voting.

1 Introduction

Artificial intelligence-based systems are increasingly getting integrated into our daily lives. Nu-
merous decisions made by an autonomous system can significantly impact human lives, either
directly or indirectly. Consider a hypothetical scenario in which many people attempt to flee
alocation simultaneously due to a terrorist attack. A centrally deployed transportation-cost
algorithm may detect an increase in transportation out of the area and dramatically increase
its cost to reduce demand, increase supply, and increase profit. Simple objective functions,
therefore, may result in undesirable outcomes. Such effects are ethically reprehensible.

1presented in (Freedman et al., 2020) and (Noothigattu et al., 2017). Our discussion will focus on (Freedman et al.,
2020), but we will compare and contrast it with (Noothigattu et al., 2017).



An alternative may be to decouple moral decision making from Al systems. However, moral
decision making cannot be left to humans in a computational system which

* Cannot be easily separated from the moral decision making part and solving, which
exceeds human capabilities. For instance, the Kidney Exchange Problem discussed in
(Freedman et al., 2020) and Section 3.

* Needs to make split-second moral decisions. For instance, the trolley problem is dis-
cussed in (Noothigattu et al., 2017) and Section 4.

* Is massively deployed, with millions of moral decisions that add up to something signifi-
cant. For instance, the computational systems behind online advertisements.

Future machines will increasingly rely on Al, with examples being organ matching systems,
self-driving cars, collateral damage estimators? (IHL In Action, 2021). In these scenarios, the
machines must adhere to ethical principles aligned with human moral values.

Formal ground truth ethical principles have been debated upon for centuries by ethicists, and
their absence poses a major challenge towards automating ethical decisions. Humans differ
in their moral judgments, and there is no obvious answer as to who is correct. In the lack of
ground-truth ethical standards, Dwork et al. suggested that we must rely on an “approximation
as agreed upon by society” (Dwork et al., 2011). However, the question then becomes to find
the approximation.

Recent papers by (Greene et al., 2016) and (Conitzer et al., 2017) argue that the field of compu-
tational social choice, which works with algorithms for aggregating individual preferences to-
wards collective outcomes, may give tools for ethical decision making. In particular, (Conitzer
et al., 2017) raise the possibility of “letting our models of multiple people’s moral values vote
over the relevant alternatives.”, thereby giving a window to automate ethical decision making.

This report discusses two crucial problems that use Computational Social Choice to develop
amodel for aggregating society’s views on moral dilemmas. The first one is the clearing house
problem in Kidney Exchange. In a kidney exchange, patients who need a kidney transplant
and have a willing but the incompatible live donor may attempt to trade their donors’ kidneys.
The moral decision aspect is the prioritization of some patients over the others to select one
solution in the presence of multiple possible.

The second problem is the trolley problem in autonomous vehicles: An autonomous vehicle
has a brake failure, leading to unavoidable catastrophic outcomes, however, the vehicle’s Al
can make an informed decision. Should it stay its course and hit a wall, killing its passengers,
one of whom is a young girl? Or swerve and kill a male athlete and his dog, crossing the street
on a red light? We will mainly discuss the first problem and then extend its framework to the
second problem.

2An Al model used during wars to determine best targets, weighing civilian casualties, damage to essential
infrastructure, military targets and military infrastructure



2 Related Work

The problem of ethical decision making in Al has recently gained widespread popularity. It
has been the focus of several recent research works (Wallach and Allen, 2009; Greene et al.,
2016; Conitzer et al., 2017)

In particular, the first study that integrates Computational Social Choice with Moral Decision
making is that of (Greene et al., 2016). Their paper discusses the potential of modelling ethical
principles as a “dummy” agent’s preferences as part of a more extensive system. A more
recent paper on ethical decision making in Al by (Conitzer et al., 2017) addresses a variety of
frameworks, including game-theoretic models, social choice, and machine learning. It states
that by aggregating the views of multiple humans, mistakes made by any individual fade in the
aggregate and result in a better system ethically.

3 Paper 1: Adapting a Kidney Exchange algorithm to align
with human values

Worldwide, many people suffer from chronic renal disease. Every year, about 2 million people
die of renal failure (ScienceDaily, 2015). India alone accounts for more than 19% of all global
deaths per year (The Lancet Global Health, 2017). Patients currently have two treatment
options: dialysis or kidney transplantation.

Dialysis is beneficial for a brief period, but it does have some disadvantages. It is often
conducted twice a week for four to five hours, which is inconvenient and exhausting for the
patient. Additional concerns include dialysis’s cost and low mortality rate.

The alternative is a kidney transplant, a surgical procedure that requires a compatible donor.
Only when the blood types of the donor and recipient are compatible can a kidney transplant
be performed (Table 3.1). A reasonably large market exists for kidney exchange, in which a
central body matches living kidney donors with patients in need. There is a severe donor
shortage due to many patients requiring kidney transplantation. The waiting list in the kidney
exchange market in the United States is approximately 90,000, whereas it is over 200,000 in
India (Organ Procurement and Transplantation, 2022; The Narayana Health, 2019).

A kidney exchange uses an algorithm to pick who gets a kidney. Patients and donors may be
prioritised depending on weights decided ad hoc by a central authority. The central authority
has the power to choose one over the other, and it may do so because of some incentive and
not a reasonable justification. From the patient’s standpoint, the allocation of kidneys has
life-death implications. This paper presents a comprehensive methodology consistent with
human moral values for determining the weights associated with individual patient profiles in
kidney exchange.
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Table 3.1: Blood-type compatibility between donors and patients

3.1 Kidney Exchange Model

A Kidney Exchange Problem can be modelled as a directed compatibility graph G(V,E) as
shown in Figure 3.1. A vertex in the graph represents a donor-patient pair. The edge from a
vertex u to v represents that the patient of vertex v is compatible and willing to receive the
kidney from the donor of vertex u. The weight w; of the edge represents the utility of the
vertex v; obtaining v;’s kidney.
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Figure 3.1: A compatibility graph with three patient-donor pairs and two possible cylces.

In general a solution to the kidney exchange problem may consist of Cycles and Chains.

Definition 1 (Cycle). A cycle in the graph G is sequence of transplants where each vertex receives
a kidney from it's previous vertex.

Definition 2 (Chain). A chain is a sequence of transplants starting with an altruist donor
unconditionally donating their kidney to a patient whose donor donates to another patient,
continuing the sequence of transplants.

For uniformity, altruistic donors are represented as a normal patient-donor pair with a ‘dummy’
patient.

3.2 The Clearing House Problem
Definition 3 (Matching). Matching is a set of disjoint cycles and chains in the compatibility
graph.

Cycles and chains need to be disjoint because a living donor can donate only one kidney. Due
to logistical issues, solutions with small maximum cycle and chain lengths are preferred.



Definition 4 (Legal Matching). A legal matching is one which obeys the restrictions on maxi-
mum sizes of chains and cycles.

Definition 5 (Utility). Utility u is a function from the set of all matchings(# ) to real numbers(R),
ie.
u: M —R

Definition 6 (Clearing House Problem). For the set of all legal matchings 4, the clearing house
problem is to find a matching M* that maximizes the utility. Formally:

M* € argmax u(M)
Me#

The common utility function used is called the utilitarian utility function, and is defined as:

UM) =3 cem Xeec We

The clearing house problem with limit on maximum cycle length L > 2 is NP-hard (Abraham
et al., 2007; BIRO et al., 2009) and also hard to approximate (Bir6 and Cechldrovd, 2007)
Therefore, kidney exchange solvers use Integer Program(IP) based formulations.
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Figure 3.2: An example of the kidney exchange problem

3.3 IP model of Abraham et al.

The paper uses a model similar to the model built by (Abraham et al., 2007) which uses custom
branch and price integer solver.

Let C(L, K) denote the set of all cycles with length atmost L and chains with length atmost K.
For every c € C(L,K), let x, = {0,1} and w, = }_.¢. w, then for the Kidney Exchange Problem
we have the integer program:

max Y WgXq suchthat Y x.<1 VveV.
ceC(L,K) c:vec



Here, the second constraint accounts for the fact that the cycles and chains must be disjoint.

3.4 The Problem

Consider the following example of the Kidney Exchange Problem shown in Figure 3.2. It can
have two solutions. Only one of the leftmost and the rightmost patient-donor pairs can receive
a kidney. It rests on the Kidney Exchange committee to decide which solution is chosen. The
Abraham et al. algorithm utilizes weights to prioritize one solution over the other, but there is
no specification on how to arrive at the weights.

The current paper provides an end-to-end framework to calculate these weights. It compares
the results with the baseline being the IP algorithm of Abraham et al. run with unit edge
weights.

3.5 Procedure

The authors first utilise a survey to determine the attributes to classify the profiles. The authors
then use another survey to find the pairwise comparisons among different patient profiles
and find a utility corresponding to each profile. The paper first runs the basic algorithm with
all edge weights equal to 1 and finds a solution with maximum cardinality. Then, it feeds
the utilities calculated as weights in the IP algorithm and modifies its objective to produce
a maximum cardinality solution (calculated in the previous run). The solution obtained is
accepted.

3.5.1 Survey 1: Selecting Attributes

A survey was undertaken on Amazon Mechanical Turk to get a list of patient attributes
deemed ethical by the society to prioritize patients. An open-ended survey, requiring the
participants to provide the attributes themselves, was conducted to remove experimenter
bias. One hundred participants were asked to read a brief overview of the kidney exchange
waiting list procedure and imagine that their country is implementing a new kidney allocation
policy. Each participant was asked to provide four characteristics that they thought the kidney
distribution policy “should take into account morally” and four that they thought the policy
“should not take into account morally.”

The researchers classified survey responses into the categories displayed in Table 3.2, specifi-
cally:

° (Age”
* “Health — Behavioral” (controllable aspects of health like diet and drug use)

» “Health — General” (involuntary health issues and other diseases unrelated to kidney
disease, such as cancer prognosis)



Category ‘ Ought ‘ Ought NOT

Age 80 10

Health - Behavioral 53 5
Health - General 44 9
Dependents 18 5
Criminal Record 9 4
Expected Future 8 1
Societal Contribution 7 3
Attitude 6 0

Table 3.2: The Attribute Collection Survey Results. The “Ought” column counts the number of responses in
each category from participants who believe it should be used to prioritise patients. Participants who
thought they should not be used to prioritise patients were counted in the “Ought NOT” column.

* “Dependents”
¢ “Criminal Record”

» “Expected Future”(included responses related to the patient’s life expectancy post-
surgery)

¢ “Societal Contribution”

* “Attitude”(tells about the patient’s psychological state and preparation for surgery and
recovery)

Responses that included features already considered, such as medical compatibility, were
disregarded.

The top three attributes were: “Age”, “Health — Behavioral”, and “Health — General”. Only these
were picked for the next step of the process due to the substantial fall in support between the
third most popular and fourth most popular categories.

The authors look into the likelihood of the open survey skewing the acquired qualities towards
medical features. For example, given the setting, most participants may not have arrived at
qualities such as a criminal past.

To reduce this skew, the authors could have complemented the approach with a closed
alternatives-based survey.

3.5.2 Survey 2: Evaluating Patient Profiles Pairwise

This part is the most significant part of the whole process, for it is where the societal view of
profile preference is taken into account.

The attributes obtained from the first survey were binarized for the ease of administration, as
shown in Table 3.3. This resulted in eight profiles, corresponding to any combination of {Y,H},



Attribute Alternative 0 Alternative 1
Age 30 years old (Young) 70 years old (Old)
Health-Behavioral 1 alcoholic drink per month (Rare) 5 alcoholic drinks per day (Frequent)

Health-General no other major health problems (Healthy) skin cancer in remission (Cancer)

Table 3.3: For each attribute two alternatives were chosen. In each pair, the preferred option was labelled 0, while

the other was labelled 1.

{R,F} and {H,C}. For example, profile YRC represents: A 30-year-old patient who consumes
around one alcoholic drink each month and is diagnosed with skin cancer.

Another survey was conducted on MTurk to collect data on how people use these three selected
attributes to prioritize patients. The MTurk survey had a total of 289 participants. They were
first given a summary of the kidney exchange process and instructed to picture themselves in
the position of having to distribute a single kidney to one of the two imaginary patients with
specific attributes. Eight profiles totalling (g) = 28 pairs were shown in random order to each
participant, and they were asked to choose the patient they believed should receive the kidney.

Summary of Responses

* As shown in Table 3.4, Profile 1 (Young patient under the age of 30, rarely consumes
alcohol, and has no significant health concerns) receives a clear preference whereas
Profile 8 (70 year old patient frequently drinks alcohol and has skin cancer in remission)

is preferred the least.

* One interesting finding was that participants prioritized behavioural health over general
health, as profile 3 (Young patient, Rare drinking, and Skin Cancer) was preferred more
than 2 (Young patient, Frequent drinking, and Healthy). Similarly, profile 7 (Old patient,
Frequent drinking, and Healthy) was preferred more than 8 (Old patient, Frequent
drinking, and Skin Cancer).

] Profile Age Drinking Cancer Preferred ‘
1(YRH) 30 rare healthy 94.0%
3 (YRC) 30 rare cancer 76.8%
2(YFH) 30 frequently healthy 63.2%
5(0ORH) 70 rare healthy 56.1%
4 (YFC) 30 frequently cancer 43.5%
7(ORC) 70 rare cancer 36.3%
6 (OFH) 70 frequently healthy 23.6%
8 (OFC) 70 frequently cancer 6.4%

Table 3.4: Ranking of the profiles based on responses to the Kidney Allocation Survey. The “Preferred” column
indicates the proportion of times the given profile was picked out of all instances in which it appeared

in a comparison.



3.5.3 Estimating Patient Profiles Scores

After gathering pairwise comparison data for each profile, it should be aggregated into a single
weight. The authors used statistical modelling to derive a single weight from the pairwise
comparison data for each profile. Specifically, they used the Bradley-Terry model.

Bradley-Terry (Bradley, 1984) model computes the probability of the outcome of the pairwise
contest between a set of players. It assigns a score p; to each profile i such that

P(i>j)=

Pi ~Viand j

(pi+pj)

where P(i > j) is obtained from the pairwise comparison data.

Suppose, we have a three individuals a, b, and c. Assume that in 100 pairwise surveys, patient
ais chosen over b 63 times, patient a is chosen over c 72 times, and patient b is chosen over ¢
58 times. Then we have the following equations according to the Bradley-Terry model:

Pla>b)=063=—P%
(Pa+pPp)
Pla>c)=072=—P%
(Patpc)
P(b>c)=058=—"rr
(pp+ pc)

Now, a score of 1.00 may be assigned to p,(as scores may be scaled by any factor and without
loss of imformation), and scores pj, and p. may be calculated.

For the above toy example when p, = 1.00, p, = 0.57 and p. = 0.40 through estimation
techniques. This results in the following calculations:

Pla>bh=—P"  ~064
(pa+pp)

Pla>c)=—Pr% ~om1
(pa+pc)

Ph>c)=—"2 ~059
(pb+pc)

Although pj and p. can be determined precisely from the first two equations, they must also
satisfy the third. So the resulting pairwise probabilities are approximations and not accurate.
Another way to see it is that we have only two degrees of freedom. For instance, decreasing p,
corrects the first result but deviates it from the second.



The higher the BT score for a profile, the higher the probability that a randomly chosen
participant chooses that profile over another. Therefore, these scores represent the value to
society in saving that profile, and hence they can be used as weights.

The authors calculate BT scores in two ways:
1. Directly estimate scores for all profiles.

2. Consider the importance of individual attributes and allow the profile score to be a
linear function of these:

P
Y Brxir +U;
r=1
where x;, is the binary value of profile i for attribute r, U; represent individual error
terms so that U; ~ N(0,0°) and f3,, the importance of attribute r is calculated.
The authors used the BradleyTerry2 package to estimate the scores. Table 3.5 shows the results.

The writers avoid discussing the disparity between the two rankings. We reason that the
distinction highlights two characteristics of the survey procedure:

1. The participants were asked to select the better profile pairwise and not to come up with
a ranking for all the profiles.

2. The participants compared the complete profiles and not individual attributes. There-
fore it may be possible that some effects might be correlated, for example, health-general

and age.
’ Profile ‘ Direct Attribute-based
1 (YRH) | 1.000000000 1.00000000%
3 (YRC) | 0.236280167 0.13183083%
2 (YFH) | 0.103243396 0.29106507%
5 (ORH) | 0.070045054 0.03837135%
4 (YFC) | 0.035722844 0.08900390%
7 (ORC) | 0.024072427 0.01173346%
6 (OFH) | 0.011349772 0.02590593%
8 (OFC) | 0.002769801 0.00341520%

Table 3.5: Weights of the profiles obtained from the Bradley-Terry model.

3.5.4 Adapting the Algorithm

The final step is to use the weights in the problem of kidney exchange clearance. These weights
were used solely to break ties; the authors remarked that it was inappropriate to use weights
for preferring patients in differing quantities when the surveys did not do so (For instance,
preferring one patient with profile 1 over two patients with profile 8).

The algorithm can be broken into the following steps:

10



1. First run the IP algorithm with unit edge weights. This returns a set of kidney exchange
cycles that maximises the number of patients receiving a kidney considering only their
medical characteristics. Store the cardinality of this solution as Q.

2. Modify the constraints of the IP algorithm to provide a solution with cardinality Q.
Re-solve the IP, now also using the obtained weights. Formally, the modified objective

becomes:
maximise
Z [ Z “’type(v)] Xe
ceC(L,K) " (u,v)ec

subject to

Y xcs1VveV

C.:VEC
Y lelxe=Q
ceC(L,K)

x.€1{0,1} Vce C(L,K)
where, |c| denotes the number of vertices in cycle ¢, type: V — {1,...,8} maps a vertex to
the patient profile, and wy denotes the score of profile 6.

The result is a solution of maximum cardinality, but prioritization based on the survey results.

3.6 Experiments

This section describes the experiments performed in the paper. The conventional IP algorithm
utilizing unit edge weights is referred to as STANDARD. In contrast, the updated algorithm
using calculated edge weights is referred to as PRIORITIZED.

Setup

The authors set up an intuitive simulation of a real kidney exchange to test the algorithm.
* Incompatible patient donor pairs enter and leave the exchange each day.
 Pairs unmatched on a day remain for consideration on the next day.

» Last-minute medical incompatibilities and logistical issues are considered using 0.5
probability for match success.

« Demographics are estimated based on the UNOS?® patient pool where possible and the
US population otherwise.

3United Network for Organ Sharing

11



3.6.1 Matchings v/s profile scores

Experiment

This simple experiment confirms the algorithm’s operation based on intuition by running 20
simulations of daily matchings for five years.

Hypothesis

1.
2.
3.

STANDARD should be proportionate to each profile.
PRIORITIZED should match higher scored profiles more often than lower scored ones.

The highest scored profiles should be matched more often by PRIORITIZED than STAN-
DARD. Similarly, the lowest scored profiles should be matched more often by STANDARD
than PRIORITIZED.

Results

As expected, because of the algorithm’s objective function:

1.

Both algorithms matched approximately 62% pairs overall. This is a non-trivial finding
since the matching chosen on a given day impacts the pairs available for matching on
the following day.

Figure 3.3 shows that STANDARD matched all profiles around 62% of the time. In our
opinion, these minor variations are due to the disproportionate distribution of profiles
among the population. Furthermore, PRIORITIZED matched higher-ranked profiles
nearly twice as often as lower-ranked profiles.

3.6.2 Matchings v/s Blood Type

Experiment

An incompatible patient donor pair can belong to the following categories based on the blood
types of the patient and the donor:

1.

Underdemanded: Donor has type ‘AB’ or Patient has type ‘O’ or both. An ‘AB’ type donor
can only donate to an ‘AB’ type patient, and an ‘O’ type patient can only receive a kidney
from an ‘O’ type donor, resulting in the fewest matches.

Overdemanded: Donor has type ‘O’ or Patient has type ‘AB’ or both. Here, an ‘O’ type
donor can donate regardless of patient blood type, and an ‘AB’ type patient can receive
regardless of donor blood type, resulting in maximum matches.

. Self-Demanded: Donor and Patient have the same blood type.

Reciprocally Demanded: One of the donor and patient has type ‘A, the other has type
‘B’

12
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Figure 3.3: The proportions of matched pairs by profile and algorithm type. The numbers are the scores allocated
to each profiles. The STANDARD algorithm gives each profile a score of 1. In this and the upcoming
figures, the inner line indicates the median, while the boxes represent the interquartile range. The
whiskers extend to the median’s interquartile range, the small circles signify outliers.

Underdemanded pairs are the most difficult to match. This experiment tests how the algorithm
fairs across these categories.

Hypothesis

1. PRIORITIZED has the most influence on under demanded pairs, for which higher-
ranked profiles are matched more often than the lower-ranked profiles. PRIORITIZED
functions like STANDARD on other categories of pairs.

Note that PRIORITIZED does not explicitly take these categories as inputs. The difference
in impact arises/can be foreseen because of the abundant matching opportunities available
for the non-underdemanded pairs, causing any profile-based effects to fade with time. The
opposite is true for the underdemanded pairs. Several other works have likewise reached the
same conclusion (Ashlagi, 2014; Toulis and Parkes, 2015).

Results

The Figure 3.4 shows that PRIORITIZED impacts underdemanded pairs significantly. Figure 3.5
shows that for non-underdemanded pairs, there is technically no difference between the
profiles.

13
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Figure 3.4: The proportions of underdemanded pairs matched over the course of the simulation
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Figure 3.5: The proportions of overdemanded, self-demanded, and reciprocally demanded pairings matched.

’

3.6.3 Matchings v/s Transformed scores
Experiment

Given that the profile scores indicate societal usefulness, the large discrepancies in scores look
arbitrary (Profile ranked one has more than four times the score of profile ranked two, yet it
most likely would not have four times the worth to society). It is clear that the profile weights
should have the same ranking as the BT scores. So the writers try out different profile weights.

14



Hypothesis

ORIGINAL represents the original profile weights, whereas LINEAR represents linear profile
weights having the same ranking as ORIGINAL.

1. Exact weights should not matter for the results.

The paper does not give an intuitive explanation. Our intuition is that exact scores should not
matter in the long term because we are averaging over numerous runs with multiple matches.

Results

The figure 3.6 confirms that minor difference is there between ORIGINAL and LINEAR.
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Figure 3.6: The proportions of underdemanded pairs matched over the course of the simulation, by profile and
algorithm . PRIORITIZED matches using the ORIGINAL weights, while LINEAR PRIORITIZED matches
using LINEAR weights.

3.7 Application in Real Kidney Exchanges

The study presents a proof-of-concept for the suggested way of introducing weighted pri-
oritisation into kidney exchange algorithms. There are some issues in the proof-of-concept
approach which need to be addressed.

* A genuine kidney exchange would necessitate that each of the attributes used in the
kidney exchange takes more values, unlike the binary values used in this research (e.g.
“age” should have more than two values)

* People who determine which patient should be prioritised(in this case, MTurk workers)
should also have access to professional advice from the experts, for example, when
selecting a health-related attribute for someone in remission from skin cancer.

15



Input from all stakeholders like patients, donors, and medical teams should be consid-
ered while deploying such an algorithm.

However, there are no issues specific to the framework as such. Therefore, the authors conclude
that the algorithm results should be robust to changes to develop a more comprehensive
system. The authors expect the algorithm to perform properly with real-world data rather
than simulations.

3.8 Our Observations

Apart from the observations, we provided along with discussing the framework, here are some
other observations we made about the framework:

The authors build sufficient motivation towards their approach. They conclude that the
PRIORITIZED algorithm will impact only the underdemanded pairs. This was slightly
unintuitive, as already noted in the Note in Experiment 2. The authors state that they
cannot justify if this fact supported the algorithm.

The algorithm should have taken the blood type category of the patient-donor pair into
account so that each patient has roughly the same chance of getting a kidney. From this
perspective, priority only within the underdemanded pairings seems illogical.

Another factor that could have been taken into account would be the prioritization
based on the urgency of the transplant. However, it might be the case that the Kidney
Exchange already takes care of that outside of the algorithm by feeding only the most
urgent patients into the pool. Still, such things may be incorporated into the algorithm
itself to make the method genuinely end-to-end.

It has been pointed out in (Noothigattu et al., 2017) that pairwise comparison probabili-
ties derived may not be a good representation of societal benefit. For example, a young
patient with a score of 0.9 compared to an old patient with 0.1 may not imply that the
younger patient is nine times more valuable to society. As shown in Experiment 3, this
is not a big problem because of the ample simulation time and fixing of the solution
cardinality. However, it needs to be taken care of in future works if preference is to be
extended across solution cardinalities.

Whether an additive utility function works well should also be a subject of debate. For
instance, it may be more valuable to save one of both a young and an old patient than
saving two young or two old patients.

Even if all issues are resolved, the majority’s preference will affect the decision. However,
choosing the best voting rule is itself debatable in Computational Social Choice.
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4 Paper 2: A Voting-Based System for Ethical Decision
Making

We live in a world where semi-autonomous vehicles already exist. As illustrated in the Trolley
Problem, implementing ethical considerations is one of the most difficult challenges to
producing completely autonomous vehicles. These are more problematic than technical
concerns because the Al ensures that it will learn and only get better once autonomous
vehicles are widely implemented.

This section examines a closely comparable but distinct paper on moral decision making in a
different domain of autonomous vehicles. We do not delve deep. Instead, we only show that
the concepts developed are applicable in another unrelated setting.

This paper makes similar conclusions to the previous one, namely that adopting society-based
approximations is required because there is no ground-truth ethical basis (the indisputably
true one) to choose one of the choices. It tries to offer a realistic approach based on com-
putational social choice for making ethical decisions in the domain of autonomous cars. It
establishes the framework for future ground-truth ethical notions and gives critical preliminary
guidance on automating ethical decision-making.

Figure 4.1: An autonomous vehicle has a break-failure. It can save the passengers by running over a group of
pedestrians or it can save the pedestrians by hitting a wall and killing the passengers.

4.1 Approach

The approach given in the paper can be summarized in four steps:

1. Data Collection: Similar to the Kidney Exchange paper, societal preferences are taken
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into account over a range of alternatives. A vector of characteristics is constructed,
including the number of victims and their gender, age, and state of health. Numerous
alternatives are formed as a result of these attributes. A survey is undertaken in which
human voters are questioned about their perceptions of these choices (Each voter is
given around 15 alternatives).

2. Learning: Using pairwise comparisons, a model for each voter’s preferences over all
alternatives is generated.

3. Summarization: Individual models are combined into a single model to get the collec-
tive preferences of all the voters.

4. Aggregation: When confronted with an ethical dilemma involving a subset of the al-
ternatives, the summarization model is used to deduce voter preferences, and a voting
rule is applied to aggregate individual choices into a collective decision. The chosen
decision is regarded by society (represented by the preferences of voters in Step 1) to be
the least catastrophic of all possible outcomes.

4.2 Similarities and differences with the Kidney Exchange Paper

The two publications share a common goal: employing human subjects’ moral judgments to
steer artificial systems. One of them discusses the Kidney Exchange Scenario, while the other
discusses the Autonomous Vehicle domain.

However, some aspects of the problems are different. In particular, the need for automated
ethical decision-making in the case of autonomous vehicles is driven by the fact that decisions
must be made too quickly to be made by a human. In contrast, the need for Al in kidney
exchanges is driven by the fact that the search space of all possible matchings is so large that it
makes the problem complicated for a human.

Additionally, in the kidney exchange paper, voting is not used to aggregate individual prefer-
ences into a single model; instead, the Bradley-Terry model obtains a single weight for each
profile, representing the value of a profile towards society. In contrast, in the current paper,
individual preferences yield a model per person, which are then summarized into a single
model. During runtime when an actual ethical dilemma occurs, a voting rule is applied to
aggregate the preferences and determine the best possible alternative to make a decision.

Nonetheless, both the papers prove that ethical decisions can be automated using Computa-
tional Social Choice.

18



5 Future Research

More research is required to justify why the framework is ethical. An industry-level implemen-
tation of this approach will open new avenues of research in this domain. Through testing
such frameworks, researchers can try to modify them to better align with human values.

When human preferences are considered, the system may introduce biases based on gender,
ethnicity, or other characteristics. A challenge in the future would be to avoid and eliminate
the introduction of gender stereotypes, prejudices, and the like into the system.

The biggest challenge in the future will be extending the current framework to incorporate
moral or legal principles, at least in simpler problems where they can be easily specified.

6 Takeaways

These papers introduced us to the issue of ethical decision-making. This is a relatively old
problem that has recently gained traction due to the widespread deployment of Al-based
systems. The papers demonstrated proof-of-concept for a method that used voting and
computational social choice to reach an ethical decision that the Al system could justify. We
also learned about the difficulties involved in manually specifying ethical principles, such as
the lack of a working ruleset. Similarly, we saw issues with letting the system learn on its own,
leading to biases because the data itself is biased. We have also seen recent active research into
combining Computational Social Choice and Al for ethical decision making.
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